COMPARAÇÃO ENTRE A PRODUTIVIDADE E A LUCRATIVIDADE DA PRODUÇÃO ORGÂNICA E CONVENCIONAL: O PERÍODO DE ANÁLISE IMPORTA?

Autores/as

  • Moisés Resende Filho Universidade de Brasi­lia

Palabras clave:

Efeito médio do tratamento nos tratados, lucratividade, produtividade

Resumen

Brasil es el mercado más grande de productos orgánicos en América Latina a pesar de cultivar solo el 0,5% de su tierra en sistemas de producción orgánicos, lo que posiblemente se deba a la menor productividad y rentabilidad de la producción orgánica frente a la producción convencional. El objetivo de este estudio fue investigar cómo se compara la producción de fresas orgánica y convencional en términos de productividad, rentabilidad y costos en 2019 para investigar si dicha comparación está influenciada por el período de análisis. Utilizando datos recopilados mediante la aplicación presencial de un cuestionario semiestructurado en el año agrícola 2019 a 79 productores de fresa del Distrito Federal (DF), se calculó el efecto promedio del tratamiento por los tratados (TCA) sobre productividad, rentabilidad y Los costos se estimaron utilizando los métodos de emparejamiento de vecino más cercano/puntuación de propensión (NNM/PSM) y regresión de cambio endógeno (ESR). Comparando los resultados del presente estudio con los de Resende Filho et al. (2019), concluyo que el período de análisis importa al comparar la productividad y rentabilidad de la producción orgánica y convencional. Esto sugiere que los estudios futuros deberían utilizar datos de panel para controlar los efectos fijos en el tiempo.

Citas

Abadie, A., & Imbens, G. W. (2006). Large sample properties of matching estimators for average treatment effects. Econometrica, 74(1), 235-267. https://doi.org/10.1111/j.1468-0262.2006.00655.x

Abadie, A., & Imbens, G. W. (2011). Bias-corrected matching estimators for average treatment effects. Journal of Business & Economic Statistics, 29(1), 1-11. https://doi.org/10.1198/jbes.2009.07333

Abadie, A., & Imbens, G. W. (2016). Matching on the estimated propensity score. Econometrica, 84(2), 781-807. https://doi.org/10.3982/ECTA11293

Amare, M., Asfaw, S., & Shiferaw, B. (2012). Welfare impacts of maize–pigeonpea intensification in Tanzania. Agricultural Economics, 43(1), 27-43. https://doi.org/10.1111/j.1468-0262.2006.00655.x

Antunes, L.E.C., Bonow, S., & Reisser Júnior, C. (2020). Morango: crescimento constante em área e produção. Anuário Campo & Negócios HF, 37: 88–92. Disponível em: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1122535/1/Anuario-HF-2020-

LEC-Antunes.pdf

Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, M. J., Aviles-Vazquez, K., Samulon, A., & Perfecto, I. (2007). Organic agriculture and the global food supply. Renewable agriculture and food systems, 22(2), 86-108. https://doi.org/10.1017/S1742170507001640

Becker, S. O., & Ichino, A. (2002). Estimation of average treatment effects based on propensity scores. The Stata Journal, 2(4), 358-377. https://doi.org/10.1177/1536867X0200200403

Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of economic surveys, 22(1), 31-72. https://doi.org/10.1111/j.1467-6419.2007.00527.x

Dalcin, D., Souza, A. R. L., Freitas, J. B., Padula, A. D., & Dewes, H. (2014). Organic products in Brazil: from an ideological orientation to a market choice. British Food Journal, 116(12), 1998-2015. https://doi.org/10.1108/BFJ-01-2013-0008

De Ponti, T., Rijk, B., & van Ittersum, M. K. (2012). The crop yield gap between organic and conventional agriculture. Agricultural systems, 108, 1-9. https://doi.org/10.1016/j.agsy.2011.12.004

Emater-DF (2016). Informativo da Produção agrícola. Sistemas de acompanhamento das ações de assistência técnica e extensão rural. Emater, Brasília, Distrito Federal, Brasil.

Fagherazzi, A. F., Cocco, C., Antunes, L. E. C., Souza, J. A., & Rufato, L. (2014). La fragolicoltura brasiliana guarda avanti. Rivista di Frutticoltura e di Ortofloricoltura, 76(6), 20-25.

Finckh, M. R., Van Bruggen, A. H., & Tamm, L. (Eds.). (2015). Plant diseases and their management in organic agriculture. American Phytopathological Society. St. Paul, Minnesota: APS Press. https://doi.org/10.1094/9780890544785

Fitzgerald, J., Gottschalk, P., & Moffitt, R. (1998). An analysis of the impact of sample attrition on the second generation of respondents in the Michigan panel study of income dynamics. Journal of Human Resources, 33(2), 300-344. https://doi.org/10.2307/146434

Froehlich, A. G., Melo, A. S., & Sampaio, B. (2018). Comparing the profitability of organic and conventional production in family farming: Empirical evidence from Brazil. Ecological economics, 150, 307-314. https://doi.org/10.1016/j.ecolecon.2018.04.022

Goklany, I. M. (2002). The ins and outs of organic farming. Science, 298(5600), 1889-1891. https://doi.org/10.1126/science.298.5600.1889b

Gregório, L.S., Gurgel, H., Dessay, N., Sousa, G. M., & Roux, E. (2019). Estimativa populacional pelo modelo people in pixel aplicado ao estudo da dengue no Distrito Federal-Brasil. Confins, 42, 1-21. https://doi.org/10.4000/confins.22922

Heckman, J. (1997). Instrumental variables: A study of implicit behavioral assumptions used in making program evaluations. The Journal of Human Resources, 32(3), 441. https://doi.org/10.2307/146178

Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection andlimited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement, 5(4), 475-492.

Heckman, J. J. (1978). Dummy Endogenous Variables in a Simultaneous Equation System. Econometrica: Journal of the Econometric Society, 46(6), 931-959. https://doi.org/10.2307/1909757

Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association, 81(396), 945-960.

Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and statistics, 86(1), 4-29. https://doi.org/10.1162/003465304323023651

Kremen, C., & Miles, A. (2012). Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecology and society, 17(4): 40. http://dx.doi.org/10.5751/ES-05035-170440

Leakey, R. R. (2014). The role of trees in agroecology and sustainable agriculture in the tropics. Annual review of phytopathology, 52, 113-133. https://doi.org/10.1146/annurev-phyto-102313-045838

Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge University Press.

Nemes, N. (2009). Comparative analysis of organic and non-organic farming systems: A critical assessment of farm profitability. Food and Agriculture Organization of the United Nations, Rome, 33. https://www.fao.org/3/ak355e/ak355e.pdf

Oliveira, V. C., la Rosa Massahud, R. T., Oliveira Costa, J. F., Andrade Melo, L. D. F., Grugiki, M. A., Melo Junior, J. L. D. A., Melo, M. F. V., Melo, E. F., & Silva, J. C. R. (2024). Avanços da produção orgânica brasileira: estudo a partir do Cadastro Nacional de

Produtores Orgânicos. Contribuciones a Las Ciencias Sociales, 17(1), 4689-4705. https://doi.org/10.55905/revconv.17n.1-280

Reeve, J. R., Hoagland, L. A., Villalba, J. J., Carr, P. M., Atucha, A., Cambardella, C., & Delate, K. (2016). Organic farming, soil health, and food quality: considering possible links. Advances in Agronomy, 137, 319-367. https://doi.org/10.1016/bs.agron.2015.12.003

Resende Filho, M. A., Andow, D. A., Carneiro, R. G., Lorena, D. R., Sujii, E. R., & Alves, R. T. (2019). Economic and productivity incentives to produce organically in Brazil: Evidence from strawberry production in the Federal District. Renewable Agriculture and Food Systems, 34(2), 155-168. https://doi.org/10.1017/S1742170517000412

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55. https://doi.org/10.1093/biomet/70.1.41

Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford economic papers, 3(2), 135-146. https://doi.org/10.1093/oxfordjournals.oep.a041827

Rubin, D. (1974). Estimating Causal Effects to Treatments in Randomised and Nonrandomised Studies. Journal of Educational Psychology, 66(5), 688-701. https://doi.org/10.1037/h0037350

StataCorp. (2017). Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC.

Uematsu, H., & Mishra, A. K. (2012). Organic farmers or conventional farmers: Where’s the money? Ecological Economics, 78, 55-62. https://doi.org/10.1016/j.ecolecon.2012.03.013

Willer, H., Trávníček, J., Meier, C., & Schlatter, B. (2021). The World of Organic Agriculture 2021: Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick, and IFOAM – Organics International, Bonn. Available from:<https://www.fibl.org/en/shop-en/1150-organic-world-2021>.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

Publicado

2024-07-03

Cómo citar

RESENDE FILHO, Moisés. COMPARAÇÃO ENTRE A PRODUTIVIDADE E A LUCRATIVIDADE DA PRODUÇÃO ORGÂNICA E CONVENCIONAL: O PERÍODO DE ANÁLISE IMPORTA?. Organizações Rurais & Agroindustriais, [S. l.], v. 26, p. e2078, 2024. Disponível em: https://www.revista.dae.ufla.br/index.php/ora/article/view/2078. Acesso em: 9 may. 2025.

Número

Sección

Economía y comercio exterior